41 research outputs found

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    Comparison of two sowing systems for CTF using commercially available machinery

    Get PDF
    ArticleThe crop establishment belongs to crucial technology operations. The quality of sowing is the basis for obtaining efficiency of production. Controlled Traffic Farming (CTF) is a technology which prevents excessive soil compaction and minimizes compacted area to the smallest possible area of perman ent traffic lanes (PTL). There were two sowing systems compared, namely row and band sowing when growing winter barley. Sowing parameters as well as all other field operations were identical for both compared systems. Measurements were conducted at an expe rimental field on non - compacted and traffic lane areas where CTF system was introduced in 2009, with 64% of compacted and 36% of non - compacted soil. Six crop parameters were analysed. Generally, it can be concluded that the band sowing performed better in yield (by 9.3% in non - compacted area; by 3.8 % in traffic lane), ear number (by 5.2% in non - compacted area; by 10.1% in traffic lane) and grain number (by 6.3% in non - compacted area; by 8.1% in traffic lane) as well as crop height (by 6.6% in non - compacted area; and by 2.4% in traffic lane). The only parameter performing worse was TGW with decrease of 6.6% in non - compacted area and decrease 2.8% in traffic lane for band system. Differences in number of grain per ear were negligible

    Effect of controlled traffic farming on weed occurrence

    Get PDF
    ArticleSoil compaction caused by field traffic is one of the most important yield limiting factors. Moreover, published results report that soil over-compaction inhibits the uptake of plant nutrients and decreases their ability to compete with weeds. Controlled Traffic Farming (CTF) is technology which prevents excessive soil compaction and minimizes compacted area to the least possible area of permanent traffic lines. A long-term experiment was established at University farm in Kolinany (Slovakia) in 2010 with 6 m OutTrack CTF system. Random Traffic Farming (RTF) is simulated by 1 annual machinery pass crossing the permanent traffic lines. Aim of presented study was to assess the effect of CTF on weed infection pressure. To achieve this, weed occurrence at different traffic treatments was determined. Emerged weeds per square meter were counted, identified and recorded at 14 monitoring points. Results showed that higher weed infection was found at the area with one machinery pass compared to the non-compacted area. Following weeds were identified: Bromus secalinus L., Stellaria media (L.) VILL., Veronica persica POIR. in LAMK., Poa annua L., Polygonum aviculare L., Convolvulus arvensis L. Occurrence of these weeds could be used as soil compaction indicator. Based on these results it can be concluded, that CTF technology has potential to decrease weed infestation in comparison to RTF system due to ration of non-compacted to compacted area. Moreover, with exact localization of weeds in traffic lines together with exact identification of weed species, it is possible to target the application of herbicides

    Nonrepetitive Colouring via Entropy Compression

    Full text link
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path whose first half receives the same sequence of colours as the second half. A graph is nonrepetitively kk-choosable if given lists of at least kk colours at each vertex, there is a nonrepetitive colouring such that each vertex is coloured from its own list. It is known that every graph with maximum degree Δ\Delta is cΔ2c\Delta^2-choosable, for some constant cc. We prove this result with c=1c=1 (ignoring lower order terms). We then prove that every subdivision of a graph with sufficiently many division vertices per edge is nonrepetitively 5-choosable. The proofs of both these results are based on the Moser-Tardos entropy-compression method, and a recent extension by Grytczuk, Kozik and Micek for the nonrepetitive choosability of paths. Finally, we prove that every graph with pathwidth kk is nonrepetitively O(k2)O(k^{2})-colourable.Comment: v4: Minor changes made following helpful comments by the referee

    Determining trafficked areas using soil electrical conductivity – a pilot study

    Get PDF
    ncrease in machinery size and its random traffic at fields cause soil compaction resulting in damage of soil structure and degradation of soil functions. Nowadays, rapid methods to detect soil compaction at fields are of high interest, especially proximal sensing methods such as electrical conductivity measurements. The aim of this work was to investigate whether electromagnetic induction (EMI) could be used to determine trafficked areas in silty clay soil. Results of randomized block experiment showed a high significant difference (p <0.01) in EMI data measured between compacted and non-compacted areas. EMI readings from compacted areas were, on average, 11% (shallow range) and 9% (deep range) higher than non-compacted areas, respectively. This difference was determined in both shallow and deep measuring ranges, indicating that the difference in soil compaction was detected in both topsoil and subsoil. Furthermore, the data was found to have a significant spatial variability, suggesting that, in order to detect the increase in EMI (which shows the increase in soil compaction), data within close surrounding area should be included in the analyses. Correlation coefficient of EMI and penetration resistance (average moisture content 32.5% and 30.8% for topsoil and subsoil) was found to be 0.66

    Planar projections of graphs

    Full text link
    We introduce and study a new graph representation where vertices are embedded in three or more dimensions, and in which the edges are drawn on the projections onto the axis-parallel planes. We show that the complete graph on nn vertices has a representation in n/2+1\lceil \sqrt{n/2}+1 \rceil planes. In 3 dimensions, we show that there exist graphs with 6n156n-15 edges that can be projected onto two orthogonal planes, and that this is best possible. Finally, we obtain bounds in terms of parameters such as geometric thickness and linear arboricity. Using such a bound, we show that every graph of maximum degree 5 has a plane-projectable representation in 3 dimensions.Comment: Accepted at CALDAM 202

    CD-independent subsets in meet-distributive lattices

    Get PDF
    A subset XX of a finite lattice LL is CD-independent if the meet of any two incomparable elements of XX equals 0. In 2009, Cz\'edli, Hartmann and Schmidt proved that any two maximal CD-independent subsets of a finite distributive lattice have the same number of elements. In this paper, we prove that if LL is a finite meet-distributive lattice, then the size of every CD-independent subset of LL is at most the number of atoms of LL plus the length of LL. If, in addition, there is no three-element antichain of meet-irreducible elements, then we give a recursive description of maximal CD-independent subsets. Finally, to give an application of CD-independent subsets, we give a new approach to count islands on a rectangular board.Comment: 14 pages, 4 figure
    corecore